Interactive Tuning of Robot Program Parameters via Expected Divergence Maximization

Mattia Racca, Ville Kyrki, and Maya Cakmak

15th ACM/IEEE International Conference on Human-Robot Interaction (HRI)
ROBOT END-USER PROGRAMMING

Main motivation: **End-User Programming makes robots accessible to novice users**
AIDING END-USER PROGRAMMING

Robot actions are the building blocks for EUP programs, with each varying number and complexity of parameters.

PARAMETERS
- Goal Pose
- Translational Speed
- Collision Threshold (move until you sense a contact)
AIDING END-USER PROGRAMMING

Robot actions are the building blocks for EUP programs, with each varying number and complexity of parameters.

PARAMETERS
- Goal Pose
- Translational Speed
- Collision Threshold (move until you sense a contact)

Challenges faced by end-users

- What robot actions to use to achieve the goal?
- How to set the action parameters?
- How to evaluate the program (debug and fix)?
PARAMETER TUNING FOR ROBOT ACTIONS

How are parameter values usually specified?

PARAMETERS
- Goal Pose
- Translational Speed
- Collision Threshold (move until you sense a certain amount of force)

→ Kinesthetic Teaching
→ GUI elements (e.g. 1-D sliders)
PARAMETER TUNING FOR ROBOT ACTIONS

How are parameter values usually specified?

PARAMETERS

- Goal Pose
- Translational Speed
- Collision Threshold (move until you sense a certain amount of force)

→ Kinesthetic Teaching
→ GUI elements (e.g. sliders)

Trial-and-error tuning strategy (tedious and time consuming):

- often effects of changes to parameter values are not immediate
- sometimes specifying a single value is not enough
AIDING 1-D PARAMETER TUNING

Idea: what if the robot proposes the parameter values to try? instead of the user selecting them with sliders
AIDING 1-D PARAMETER TUNING

Idea: what if the robot proposes the parameter values to try? instead of the user selecting them with sliders

Formulation: we formulate this as an Active Learning (AL) problem.

AL agent iteratively:

1. selects informative parameter values to try \textit{(query selection)}
2. action is reproduced with selected parameter \textit{(actual querying)}
3. user gives feedback \textit{(answering)}
4. parameter range estimation is updated \textit{(model update)}
TUNING PIPELINE IN ACTION

A Panda Program

Current Primitive's parameters:

Motion Speed
0.228 m/s

I will execute this Linear Motion now with Motion Speed = 0.228 m/s

Robot State

READY

Go to start state

Execute one step

Recover From Error
Bayesian approach: **priors over parameter values** (e.g. from expert programs)
FEEDBACK AFTER THE ACTION

Directional answers: given the 1-D nature of the estimated parameters, the user’s feedback can be directional (higher, lower, fine)
FEEDBACK AFTER THE ACTION

Directional answers: given the 1-D nature of the estimated parameters, the user’s feedback can be directional (higher, lower, fine)

“The motion was too fast! I want it slower”
SELECTING THE VALUE TO PROPOSE

How to select the parameter value?

- **At random** (complexity O(1))
- **Uncertainty sampling** (O(k)) ~ basically a weighted binary search on the prior
- **Expected Divergence Maximization** (O(k^2))
SELECTING THE VALUE TO PROPOSE

How to select the parameter value?

- **At random** (complexity $O(1)$)
- **Uncertainty sampling** ($O(k)$) ~ basically a weighted binary search on the prior
- **Expected Divergence Maximization** ($O(k^2)$)

\[
S_{ij} = \mathbb{E}_a[J_S(f(x|v, a), f(x))]
\]

\[
= \sum_a p(a|v, f(x)) J_S(f(x|v, a), f(x))
\]
EXPERIMENTS

1. synthetic priors and simulated oracle users
2. priors from expert programs (8 experts) and simulated oracle users
3. usability study: 8 novice users, using expert priors
EXPERIMENTS

1. synthetic priors and simulated oracle users
2. priors from expert programs (8 experts) and simulated oracle users
3. usability study: 8 novice users, using expert priors

Domain Specific Language (DSL) -- 5 actions each with 1 or 2 parameters

Tasks for priors: handover, 2 pushing tasks, and a pick and place
EVALUATION WITH NOVICE USERS

Task: tune the parameters of a provided handover program
Conditions: Baseline (GUI sliders) vs Active tuning
RESULTS and OBSERVATIONS

- **SUS score:** baseline 73.7 *vs* Active tuning 73.1 (good usability)
- **With Active tuning,** novice users produced parameter ranges **closer** to the expert ones
- **With Active tuning,** faster tuning *(8 min *vs* 13 min)*
RESULTS and OBSERVATIONS

- **SUS score:** baseline 73.7 vs Active tuning 73.1 (good usability)
- **With Active tuning,** novice users produced parameter ranges closer to the expert ones
- **With Active tuning,** faster tuning (8 min vs 13 min)

From participants’ feedback:

- **Active tuning** helped at the beginning but had strict control over the process
- Participants reduced tuning attempts over time with the baseline
 Active tuning did not → perceived as slower and less efficient!
INTERESTING FUTURE DIRECTIONS

Interaction side:

- **Control issue:** more discreet ways of suggesting parameter values to try out e.g. overlaying information on the GUI sliders or Active tuning only on demand
- **Time consuming:** can (some) executions be handled in simulation/visualization tools? can users still express feedback?
INTERESTING FUTURE DIRECTIONS

Interaction side:

- **Control issue:** more discreet ways of suggesting parameter values to try out e.g. overlaying information on the GUI sliders or Active tuning only on demand
- **Time consuming:** can (some) executions be handled in simulation/visualization tools? can users still express feedback?

Learning side:

- **Different querying schemes:** if action has 2 or more parameter, let AL agent **pick** which parameter to tune
- **Tune single or multiple parameters at a time?** can users still express feedback?
CONCLUSIONS

We framed the tuning of parameters of robot actions as an Active Learning problem and proposed a novel interactive tuning method.

We validated the tuning approach both in simulation and in a real robot scenario.

Experiments showed the usability of the method with novice users, and allowed us to identify several promising future directions.
Interactive Tuning of Robot Program Parameters via Expected Divergence Maximization

Code available at github.com/mattiaracca/eupanda
Showcase video at vimeo.com/mattiaracca/hri20
Paper available on ACM Digital Library!

Mattia Racca, Ville Kyrki, and Maya Cakmak
mattia.racca@aalto.fi

15th ACM/IEEE International Conference on Human-Robot Interaction (HRI)